SIMPLE Grid Framework

Mayank Sharma (CERN, speaker)
Maarten Litmaath (CERN)
Eraldo Silva Junior (CBPF, Brazil)
whoami

- Software Engineer, CERN.
- Developer of SIMPLE Grid Framework.
- Google Summer of Code, Google Code-In
- Release Manager, OpenMRS Platform 2.0
- Hackathon/Startups/ IoT
CERN: Quick overview

- Largest Particle Accelerator located on the Franco-Swiss border.
- LHC: A 27km long tunnel through which high energy particle beams are accelerated.
- Particle beams, travelling in opposite directions collide at 4 main experiments (Atlas, CMS, Alice and LHCb).
- Popular contributions: Higgs Boson (2012), World Wide Web, Hardon Therapy (Medical Applications) etc.
The LHC challenge

- 50+ PetaByte/year (Raw data), 80+ PetaByte/year (Simulated/Derived data).
- Data Analysis requires ~500k typical CPU processor cores.
- Scientists spread around the world.
- CERN can provide 20-30% of CPU and storage.
- 70-80% are provided by Worldwide LHC Computing Grid (WLCG) providers.
The WLCG Answer

- 170+ Computing Centers, 35+ countries.
- 15 Large centres for long term data management
 - CERN = Tier-0
 - 14 Tier-1 Center
 - New: Korea, Russia
 - Fast Network Links
- 70+ federations of 140+ smaller Tier-2 centers.
- Tens of Tier-3 sites.
 - University resources dedicated to smaller physics groups

Read More [here](#)!
Diversity in WLCG

Types of **WLCG services and middleware packages.**

Technologies preferred by site admins for managing their infrastructure

15/11/18

SIMPLE Framework: PyParis 2018
Site Admin’s Perspective

- 51 Sites responded to the questionnaire that shows potential benefits of shared repositories

Conclusion:
- Most sites still require classic grid services which can be complicated to configure/deploy
- Simpler mechanisms for orchestration of sites utilizing modern infrastructure tools will be beneficial
- Strong support for Docker, Puppet, OpenStack images
SIMPLE

- **Solution for** Installation, **Management and Provisioning of** Lightweight Elements
- Support diversity in WLCG sites with minimal oversight and operation efforts
- Keep *functionality the same*, but easier for site admins to setup and maintain
Principles

SIMPLE

Abstraction

DRY (Don't Repeat Yourself)

Modularity

Simple Deployment

Extensibility

Community Effort

One node to configure the site

SIMPLE Framework: PyParis 2018
What SIMPLE Grid does

• Set up a grid site with $O(100)$ lines of YAML
• Modular and easy to extend to support other grid services
• Community Driven: Open source and open discussion channels.
Wait, but what am I doing here?

- We took our abstraction, modularity and extensibility principles too seriously!
- With a few lines of YAML, you can create a complex computing cluster that runs your desired software packages and services.
- Application Beyond CERN: Economics/Finance, AI/Machine Learning, Medicine/Microbiology IoT
Wait, but what am I doing here?

- 2 of 3 SIMPLE Core Components are python packages.
- Open Source and Community Driven.
- Develop a Robust core with SIMPLE Grid, Parallelly enable the community to lead other applications.
SIMPLE – Project Structure

Top Level Specification

Implementation 1
- Site infrastructure
 - Docker + Swarm
 - Puppet
- Grid services:
 - CreamCE
 - Torque/Maui Batch
 - Torque WN

Implementation 2
- Site infrastructure
 - Docker + Swarm
 - Ansible
- Grid services:
 - CreamCE
 - Torque/Maui Batch
 - Torque WN

Implementation N
- Site infrastructure
 - Docker + Kubernetes
 - Ansible/Puppet
- Grid services:
 - HTCondorCE
 - HTCondor Batch
 - HTCondor WN

Now

Upcoming
SIMPLE – Lightweight Elements

- Site Level Configuration File
- Component Repositories
- YAML Compiler
- Simple Configuration File
- Central Configuration Manager
- Configuration Validation Engine
- YAML
- SIMPLE

SIMPLE Framework: PyParis 2018
Site Level Configuration File

A single YAML file to describe:

- **Site-Infrastructure** (Hostnames, IP addresses, OS/Kernel, Disk/Memory)

- **Service Components** (What components to install and configure)

- **Background Technologies** (Puppet/Ansible, Docker/Kubernetes)

Specific to Grid Use-Case:

- **Generic Site Info** (Users, Groups, Supported VOs)

- **Misc. Site Info** (Security emails, location etc.)

15/11/18

SIMPLE Framework: PyParis 2018
Component Repositories

- Publicly hosted repositories on GitHub that provide
 - **Dockerized** services that are executed on the Cluster. For instance, CE/WN/Batch/Squid etc.
 - **Meta information** for configuration of containers using different configuration management tools

- 1 repository for every cluster service (for the Grid use case, CreamCE, CondorCE, Torque, Slurm reside in separate repositories)

- Grid Examples: **CreamCE, TorqueWN**
YAML Compiler

• **Minimize configuration requirements via**
 • Variables
 • Sensible *default values* for site-level configurations
 • Ability to *override* values
 • *support additional parameters* not defined in the system
 • Builds on top of **PyYAML** and **Ruamel**
 • Split configuration into *multiple logically related* YAML files that can be shared
Configuration Validation

- Built on top of **Yamale**.
- Configuration validation engine to ensure information supplied in site configuration file:
 - meets the configuration requirements of desired site component
 - is realizable on the available infrastructure using available background technologies
- http://cern.ch/go/CvS8
- Possibility to inject custom validation rules
Compiler + Config Validation

- New keywords:
 - `__from__` : (Resolve complex anchor/variable hierarchies)
 - `__include__` : (Similar to `import` in python)
- Support for **Runtime Variables**
- **Custom data types, schema files and default values.**
Central Configuration Manager

- **The main module** for centrally configuring everything at the site
- **Uses Validation Engine** to check site-configuration file
- **Checks status of available Site Infrastructure** that needs to be orchestrated
- **Installs and configures component repositories** from the GitHub repositories
Central Configuration Manager

• Implements a Networking strategy (overlay/dedicated)
• Executes lifecycle callbacks on the Hosts and Containers of component repositories.
• Runs tests to check for success or failure of site configuration
Specification: Putting it Together
WLCG Example

Top Level Specification

Implementation 1
- Site infrastructure
 - Docker + Swarm
 - Puppet
- Grid services:
 - CreamCE
 - Torque/Maui Batch
 - Torque WN

Implementation 2
- Site infrastructure
 - Docker + Swarm
 - Ansible
- Grid services:
 - CreamCE
 - Torque/Maui Batch
 - Torque WN

Implementation N
- Site infrastructure
 - Docker + Kubernetes
 - Ansible/Puppet
- Grid services:
 - HTCondorCE
 - HTCondor Batch
 - HTCondor WN

Now

upcoming
Implementations

- Site Level Configuration File YAML Compiler
 - Python command line utility
- Configuration Validation Engine
 - Python command line utility
- Central Configuration Management System
 - Puppet
 - Ansible
 - ... (possibly more tools)

Google Summer of Code 2018 Project
Alpha candidate developed by Tarang Mahapatra,
University of British Columbia, Vancouver
Implementations

- Repositories for Components
 - Cream Compute Element + Torque Batch System
 - Torque Worker Node
 - ... [Images of various computing-related logos]

- Repositories for Other Applications
 - Economics: Julia Gavrilenko (REU), Sergei Belov (JINR)
 - ... [Images of JINR logo]

- But, How to support my use case?
 Create a new GitHub repository with your containerized services.
 The framework takes care of the rest!
The Open Source Community

Project Homepage
http://cern.ch/go/9lHd

GitHub Repositories
http://cern.ch/go/kr7p

Simple Grid Specification
http://cern.ch/go/8JLH

Technical Discussion List (E-Groups)
Name: WLCG-Lightweight-Sites-Dev
Link: http://cern.ch/go/l9wZ

Google Forum
Name: WLCG Lightweight Sites
Link: http://cern.ch/go/Hz7S

Mattermost (IM):
Team: WLCG
Name: WLCG-Lightweight-Sites
Link: http://cern.ch/go/8HWP
Conclusions

• **Setup a robust and complex computing infrastructure with a few hundred lines of YAML description.**

• **Only standard SysAdmin know-how required.**

• **Focus on your code and not your infrastructure.**

• **Open Source and Community Driven!**
Questions?

Sounds Interesting?
Let’s talk:
Mayank Sharma
Eraldo Silva Junior

Important Links:
Website: https://wlcg-lightweight-sites.github.io
GitHub Org: WLCG-Lightweight-Sites
Mailing List: Google Groups
Wiki: CERN Twiki
Technical Roadmap (WLCG): CERN Twiki
Issue Tracking: v1