Geospatial data processing for image automatic analysis

PyParis 2018 - 15/11/18

Raphaël Delhome
Introduction
Oslandia...

- since 2009
- Open Source specialist
- GIS experts (QGIS contributors)
- Provide geospatial data solutions
- today: 17 teammates
...and I

- At Oslandia for 1.5 year
- Data Scientist
- in charge of R&D actions
Context

- Artificial Intelligence at Oslandia
- Aerial image democratization
- A historic use case: building footprint detection
Deep learning and geospatial data
Image analysis use cases at Oslandia

Tech stack: Linux, Python (Keras, Pillow, ...)

Semantic segmentation
- Street-scene images
- Aerial images
- OpenStreetMap data parsing

Instance segmentation
- Aerial images

(https://github.com/Oslandia/deeposlandia)
Semantic segmentation

Inputs N images ($P \times P$ pixels, C channels), L labels

Outputs N arrays of shape $P \times P \times L$
Mapillary dataset

- .jpg images and .png labels (from 800x600 pixels to 5500x4000 pixels)
- 25000 images (18000 for training, 2000 for validation)
AerialImage (INRIA)

- Georeferenced .tiff images (5000 * 5000 pixels)
- 360 images (10 cities of 36 tiles each)
- 50% training, 50% testing
Link with OSM data

- Rebuild labelled images starting from OSM database
- OSM data as Ground-truth OR additional input data
- Process:
 - Extract coordinates (GDAL)
 - Query OSM data (Overpass)
 - Store the data in the database (osm2pgsql)
 - Generate raster tile (Mapnik)

(github.com/Oslandia/osm-deep-labels)
Link with OSM data

- Left: raw image
- Center: ground-truth label
- Right: OSM raster
Instance segmentation

Inputs \(N \) images \((P \times P \text{ pixels}, C \text{ channels})\), \(L \) labels

Outputs \(N \) arrays of shape \(P \times P \times S \), with \(S \) the instance number (cf Mask-RCNN)
Main issue

Design a geospatial data pipeline for IA treatments: Luigi package (1 operation = 1 pipeline task)

Tanzania challenge as an opportunity to implement it
Pipeline design
Tanzania challenge

- Challenge organized by WeRobotics
- Building instance detection and status discrimination (completed, unfinished, foundation) in Tanzania
- 13 images (from 17k x 42k to 51k x 51k pixels)
Data parsing
Data preprocessing

- Generate tiles: GDAL (integrated in the Python pipeline through sh)

```
gdal_translate -srcwin <min-x> <min-y> <tile-width> <tile-height> <input-path> <output-path>
```

- Get geo-features: GDAL

```
from osgeo import gdal
ds = gdal.Open(filename)
# ds.RasterXSize, ds.RasterYSize,
# ds.GetGeoTransform(), ds.GetProjection()
```
Data preprocessing

• Store labels to database: `ogr2ogr` (integrated in the Python pipeline through `sh`)

```bash
ogr2ogr -f PostGreSQL <conn-string> <input-path>
    -t_srs EPSG:<srid> -nln <table-name> -overwrite
```

• Extract tile items: `PostGIS` (and `psycopg2`)

```sql
WITH bbox AS SELECT(ST_MakeEnvelope(<bbox_coordinates>))
SELECT <building_intersection>
FROM <table> AS t JOIN bbox
ON ST_Intersects(t.geom, bbox.geom)
```
Data preprocessing

Image → Tiling → Geo-features → Tile → Geo-features → Features (image) → DB → ogr2ogr → Labels (image)

Features (image) → Geo-features → Features (tile) → Item extraction → Items (tile)
Model training

github.com/matterport/Mask_RCNN

- Instance-specific segmentation on various object types (complete buildings, incomplete buildings, foundations)
- Hyperparameter settings: number of training epochs? Learning rate?
- Hardware criticity: 1 GTX 1070Ti GPU
Model training

Tiles

_.json

Items (tile)

Model weights

_.h5
Model inference

- Generate tiles on test images (cf training image processing)
- Prediction through Mask_RCNN package

```
from mrcnn import model as modellib

model = modellib.MaskRCNN(mode="inference",
                          config=<config>,
                          model_dir=<model_path>)

weights_path = model.find_last()
model.load_weights(weights_path, by_name=True)
result = model.detect(<image_data>)
```

Output: N boolean masks, N class_ids, N scores (N being the number of detected instances)
Model inference
Postprocessing

- Post-process detection output
 - Detect polygon contours within boolean masks: OpenCV
 - Transform pixels into geographical coordinates
 - Build polygons with geojson and shapely

```python
geom = geojson.Polygon(<list-of-points>)
polygon = shapely.geometry.shape(geom)
```

Output: .csv files with building IDs, prediction scores, geometries
Postprocessing

- Merge results: pandas

```python
pred = pd.concat([pd.read_csv(filename) for filename in <postprocess_folder>])
```

- Geo-localize results: shapely, GeoPandas

```python
pred["geom"] = [shapely.wkt.loads(s) for s in pred["coords_geo"]]
gdf = gpd.GeoDataFrame(pred, geometry="geom")
gdf.to_file(<outputpath>, driver="GeoJSON")
```
Postprocessing

- Predicted items (tile)
- .json

- Predicted items (tile)
- .csv

- Merge

- Predicted items (image)
- .csv

- CHALLENGE OUTPUT

- Geolocalize

- Predicted items (image)
- .geojson
Put it all together
Result visualization
Conclusion
Output and discussion

- Geospatial data pipeline Proof of Concept
- ...However very poor results for now :-(
- Areas for improvement:
 - consider the images without any instance
 - manage identical building on adjacent tiles on Robosat manner
- ...
- Still on processing! :-(
Bonus track: web app demo
Thank you for your attention!

Find out more:

- (Tanzania challenge code open sourced soon)
- github.com/Oslandia/deeposlandia
- github.com/Oslandia/osm-deep-labels
- http://data.oslandia.io