
PyParis 2018
Nina Zakharenko

 @nnja
bit.ly/ParisTechDebt

 Livetweet!

use #PyParis

@nnja

Technical Debt

The code monster in your
closet

slides: bit.ly/ParisTechDebt

 @nnja

What is

technical debt?

 @nnja

A series of bad decisions

(Both business & technical)

 @nnja

Which lead to ->

Error prone code & architecture

 @nnja

... and using more

Resources

to accomplish

Less
 @nnja

What decisions were made
in the past that prevent me

from getting sh** done
today?

 @nnja

What causes

technical debt?

 @nnja

Me.

And you.
 @nnja

Mistakes I Made Early On
4 Not seeing the value in unit tests

4 Not knowing how to say NO to features

 @nnja

Mistakes I Made Early On
4 Overly optimistic estimates

4 Putting releases over good design & reusable code

 @nnja

Time Crunch

That project was due yesterday!

I'll take a shortcut, and clean up the
mess tomorrow.

 @nnja

Unneeded Complexity

Lines of code committed != amount of
work accomplished

 @nnja

Lack of understanding
1. Have a problem

2. Look up a solution on stackoverflow

3. Copy & paste it into your code

4. ???

5. Bugs!

 @nnja

Culture of Despair

This is already a heap of trash.

Will anyone really notice if I add one
more thing to the top?

 @nnja

Red Flags
Houston, we have a problem.

 @nnja

Code Smells
4 Not Bugs

4 An indication of a deeper problem

 @nnja

Code Smells
4 Half implemented features

4 No documentation, or poor documentation

 @nnja

Code Smells
4 Commented out code

4 Incorrect comments

4 No tests, or worse: broken tests

 @nnja

Restore deleted code with git!

Find by content:

$ git log --summary -G'(D|d)jango'

Find the commit that deleted a file:

```shell
git log --diff-filter=D --summary -- <filename>

 @nnja



No more

commented out

code! 
 @nnja



Poor Documentation
class OrganicGlutenFreePizzaFactory:
    def get_dough(self):
        """
        Return amazing, organic, GMO and Gluten Free Dough
        """
        # ran out of organic gluten free, use the other stuff.
        # return 'organic gluten free dough'
        return 'gmo pesticide processed gluten-full dough'

 @nnja



Architecture & Design... Smells
4 Parts of the code no one wants to touch

4 Brittle codebase -- changing code in one area breaks 

other parts of the system

4 Severe outages caused by frequent & unexpected 

bugs

 @nnja



Good Design -> Implementing new 
features comes easily

Poor Design -> New features are shoe-
horned into the system

 @nnja



Python Specific

 @nnja



Functionality changes, but variable 
names don't

employees = ['John', 'Mary', 'Dale']

employees = 'Bob'

employees[0]

 @nnja



Monkey Patching 
!"

def new_init(self):
    pass

some_library.SomeClass.__init__ = new_init

 @nnja



What exactly does this decorator do?

def decorator_evil(func):
    return False

@decorator_evil
def target(a,b):
    return a + b

>>> target(1,2)
TypeError: 'bool' object is not callable

>>> target
False



Circular Dependencies

# Circumvent circular dependency warnings
def some_function(x):
    from some.module import some_method
    some_method(x)

 @nnja



Case Studies

 @nnja



IRS Chief:
"We still have applications that were 
running when JFK was President"

Tech at the IRS



50 Year Old Technology

"And we continue to use the COBOL 
programming language, it is extremely 
difficult to find IT experts who are 

versed in this language."

 @nnja



It's not just the IRS
4 Banks & Financial Institutions

4 Universities

4 Air Traffic Control

4 ... many still use COBOL

 @nnja



Story Time
4 I used to work in finance.

4 At the time I was there, all of the banking systems 

were run on mainframes. 

4 The bankers were getting frustrated. They wanted a 

UI.

 @nnja



Big Idea!
4 Let’s write a fancy new web front end

4 It’ll do ALL the things

 @nnja



But
4 Rewriting the backend is too expensive

4 It already does what we need

4 Let's leave the mainframe as the backend

 @nnja



Cursors
4 The mainframe would output a text screen from a 

program result, based on a query.

4 The results would be parsed by reading variables 

from the screen in certain positions.

 @nnja



Result?
4 The new system was incredibly slow

4 And error prone

4 After months of work, the multi-million dollar 

rewrite was scrapped

 @nnja



You can try to cover up debt...
(but it probably won't work)

 @nnja



The MVP
4 (Minimum Viable Product)

4 Get the product to market as soon as possible

 @nnja



A Great Idea
4 A successful project that was created by a lone 

developer in a coffee fueled 48 hours.

 @nnja



There Was a Problem
4 Years went on, but the initial code and design didn’t 

go away.

4 Instead, it became the base for an expanding project, 

with expanding features.

4 There was never any time to refactor.

 @nnja



!"#

 @nnja



Scope Creep
4 Features that someone thought was a good idea one 

day, stuck around forever.

4 > “In case we need them. Later.”

 @nnja



Sad Developers
4 Minimal working tests (no time to write them).

4 When a release was pushed, something was bound to 

break.

4 Made everything feel like it was your fault.

 @nnja



Grinding To a Halt
4 Development time for new features skyrocketed

4 The project was deemed too difficult to maintain

4 ... and cancelled.

 @nnja



Sometimes you need to 

burn it.

With fire.

 @nnja



Battling The Monster

 @nnja



Don't point fingers

Technical debt is a team-wide problem.

Everybody needs to be part of the 
solution.

 @nnja



Work Together
4 Code Standards

4 Pair Programming

4 Code Reviews

 @nnja



Unless something is on fire, 
or you’re losing money, 
don't merge unreviewed 

code into master.

 @nnja



Be Accountable
4 Unit & Integration Tests

4 Pre-Commit Hooks

4 Continuous Integration

 @nnja



Make a Commitment
Company tried to fight debt, but they 

didn't make a commitment.

 @nnja



Ended up with twice as 
many technologies in their 
stack as needed, and twice 

as big of a mess.

 @nnja



Sell It To Decision Makers

By allocating project time to tackling debt, 
the end result will be less error prone, easier 
to maintain, and easier to add features to.

 @nnja



Not broken, why fix it?

Source



Ski Rental Problem

You’re going skiing for an unknown 
number of days.

It costs $1 a day to rent, or $20 to 
buy.

Source



Hiring developers is hard.

Technical debt frustrates developers.

Frustrated developers are more likely 
to leave.

 @nnja



Some lingering debt is inevitable.

Don't be a perfectionist.

Figure out the project tolerance, and 
work with it.

 @nnja



Use these arguments to 
justify the additional time 
it takes to do things right

 @nnja



To Win The Fight, Pay 
Down Your Debt

 @nnja



Refactoring

The single greatest tool in your toolbox

 @nnja



What is it?

Systematically changing the code 
without changing functionality, while 

improving design and readability.

 @nnja



Refactoring

4 Slow and steady wins the race.

4 The end goal is to refactor without breaking existing 

functionality.

 @nnja



Refactoring

4 Replace functions and modules incrementally.

4 Test as you go.

4 Tests are mandatory at this step.

 @nnja



github.com/Yelp/undebt, yelp 

refactoring



Use proper design patterns

github.com/faif/python-patterns



Use depreciation patterns
Like openstack debtcollector

class removed_property(object):
    """Property descriptor that deprecates a property.
    This works like the ``@property`` descriptor but can 
    be used instead to provide the same functionality 
    and also interact with the :mod:`warnings`module to 
    warn when a property is accessed, set and/or deleted.
    """

 @nnja



Use vulture.py
to find dead or unreachable code

$ pip install vulture
$ vulture script.py package/

or 

$ python -m vulture script.py package/

github.com/jendrikseipp/vulture



sample code

def foo():
    print("foo")

def bar():
    print("bar")

def baz():
    print("baz")

foo()
bar()

vulture.py output

› python -m vulture foo.py
foo.py:7: unused function 'baz' (60% confidence)



Prioritize

What causes the biggest & most 
frequent pain points for developers?

 @nnja



Just like with
monetary debt,

pay off the high interest
loan first.

 @nnja



Shelf Life

What's the life expectancy of this 
project?

Longer shelf life -> higher debt 
interest

 @nnja



Technical debt can be strategic

If you don't have to pay it off, you got 
something for nothing.

 @nnja



Making time for refactoring depends 
on the size of your team, and the size 

of your problem.

 @nnja



Guidelines

4 Small

4 Devote a week every 6-8 weeks

4 Medium

4 Devote a person every 1-4 weeks, rotate

4 Large

 @nnja



A Few Last Tips

 @nnja



Code should be for humans

 @nnja



Boy Scout Rule

"Always check in a module cleaner than 
when you checked it out."

Source



Expect To Be Frustrated
The process of cleaning up days / 

months / years of bad code can be 
analogous with untangling a ball of 

yarn. 
Don't give up.

 @nnja





Thank You!

Python @ Microsoft: 
 bit.ly/parispython

@nnja

 @nnja


