

W Livetweet!
use #PyParis

@nnja

N2
Y ' * 'c"
) ¥, «’\, g

: .'o e’
.

o
sy S

WY .4 e,
' @ . o"', 8)
slides: bit
. o MU
| v 3

What is
technical debt?

¥ @Nnja

A series of bad decisions

(Both business & technical)

¥ @Nhnja

Which lead to ->

Error prone code & architecture

¥ @Nhnja

... and using more

Xy Y¥Y]

Resources

to accomplish

Less

What decisions were made
in the past that prevent me

from getting sh®** done
today?

¥ @Nhnja

WHEt causes
technical debt?

Y @NNjA

Mistakes | Made Early On

2 Not seeing the value in unit tests

<+ Not knowing how to say NO to features

Mistakes | Made Early On

2 Overly optimistic estimates

2 Putting releases over good design & reusable code

Time Crunch

That project was due yesterday!

I'll take a shortcut, and clean up the
mess tomorrow.

¥ @Nhnja

Unneeded Complexity

Xy XY

Lines of code committed != amount of
work accomplished

Lack of understanding

|. Have a problem
2. Look up @ solution on stackoverflow
3. Copy & paste it into Your code

4. 7?77

5. Bugs!

Culture of Despair

This is already a heap of trash.

Will anyone really notice if | add one
more thing to the top?

¥ @Nhnja

THERE 15 SUCH A |
THING AS A SPACE:
MONSTER!

- . -

~ Houstgn, w,

: %@/JA)

=

Code Smells

<+ Not Bugs

2+ Anindication of a deeper problem

Code Smells

2 Half implemented features

2+ No documentation, or poor documentation

¥ @hnja

Code Smells

<+ Commented out code
% |ncorrect comments

<+ No tests, or worse: broken tests

Restore deleted code with g1t!

Find by content:
S git log --summary -G'(D|d)jango’

Find the commit that deleted a file:

" "shell
git log --diff-filter=D --summary -- <filename>

¥ @hnja

No more
«:ommenfced out

codel Q

na

Poor Documentation

class OrganicGlutenFreeP1izzaFactory:
def get dough(self):

Return amazing, organic, GMO and Gluten Free Dough

ran out of organic gluten free, use the other stuff.

return 'organic gluten free dough'
return 'gmo pesticide processed gluten-full dough'

¥ @Nhnja

Architecture & Design... Smells

% Parts of the code no one wants to touch

2 Brittle codebase -- changing code in one area breaks
other parts of the system

2+ Severe outages caused by frequent & unexpected
bugs

¥ @hnja

Good Design -> Implementing new
features comes easily

Poor Design -> New features are shoe-
horned into the system

¥ @Nhnja

Functionality changes, but variable
names don't

employees = ['John', 'Mary', 'Dale']
employees = 'Bob’

employees|[0]

¥ @hnja

N
&

Monkey Patching ©

def new _1nit(self):
PAsSSs

some_library.SomeClass. 1nit new_1nit

What exactly does this decorator do?

def decorator evil(func):
return False

@decorator evil
def target(a,b):
return a + b

>>> target(1l,2)
TypeError: 'bool' object 1s not callable

>>> target
False

Circular Dependencies

Circumvent cilrcular dependency warnings
def some_function(x):

from some.module 1mport some_method
some_method(Xx)

£\ ._/, 55 a\.‘ .
§ =
1, \. A _ T *

X . =

=)

Yo

7~ _“:
- L

.M§x o=

=
AN
=
m—
J

Fig. 22.—Vampire Bat.

7., !
)
/
>,
e o i
P et
L4
L

o0 Year Old Technology

rxry Yy

"And we continue to use the COBOL
programming language, it is extremely
difficult to find IT experts who are
versed in this language.”

¥ @Nhnja

It's not just the IRS

+ Banks & Financial Institutions
* Universities

2+ Air Traffic Control

2 ... many still use COBOL

Story lime

% | used to work in finance.

2+ At the time | was there, all of the banking systems
were run on mainframes.

2+ The bankers were getting frustrated. They wanted a
UL.

¥ @hnja

Big ldeal

< Let’s write a fancy new web front end
2 It’/lldo ALL the things

¥ @hnja

2+ Rewriting the backend is too expensive
2 It already does what we heed

% Let’s leave the mainframe as the backend

¥ @hnja

Cursors

? The mainframe would output a text screen from a
program result, based on a query.

2% The results would be parsed by reading variables
from the screen in certain positions.

¥ @hnja

Result?

2+ The new system was incredibly slow
2+ And error prone

% After months of work, the multi-million dollar
rewrite was scrapped

¥ @hnja

You can try to cover up debt...
(but it probably won't work)

The MVP

* (Minimum Viable Product)

+ Get the product to market as soon as possible

¥ @hnja

A Great ldea

2+ A successful prgoject that was created by a lone
developer in a coffee fueled 48 hours.

¥ @hnja

There Was a Problem

2+ Years went on, but the initial code and design didn’t
go AWaY.

2 Instead, it became the base for an expanding praoject,
with expanding features.

2+ There was hever ahy time to refactor.

¥ @hnja

Scope Creep

2+ Features that someone thought was a good idea one
day, stuck around forever.

% > % n case we heed them. Later.”

¥ @hnja

Sad Developers

2+ Minimal working tests (ho time to write them).

2+ When a release was pushed, something was bound to
break.

2+ Made everything feel like it was your fault.

¥ @hnja

Grinding To a Halt

2+ Development time for new features skyrocketed
2+ The project was deemed too difficult to maintain

% ... ahd cancelled.

So etimes

(DU

2d, to

Don't point fingers

§ 0 e © §

Technical debt is a team-wide problem.

Everybody needs to be part of the
solution.

¥ @Nhnja

Work Together

+ Code Standards
?* Pair Programming

% Code Reviews

Unless something is on fire,
or you're losing money,
don't merge unreviewed

code into master.

¥ @Nhnja

Be Accountable

2 Unit & Integration Tests

% Pre-Comwmit Hooks

® Continuous Integration

Make a Commitment

Company tried to fight debt, but they
didn't make a commitment.

¥ @Nhnja

Ended up with twice as
many technologies in their
stack as needed, and twice
as big of a mess.

¥ @Nhnja

Sell It To Decision Makers

By allocating project time to tackling debt,
the end result will be less error prone, easier
to maintain, and easier to add features to.

¥ @hnja

Not broken, why fix it?

Cost

Source

Hiring developers is hard.

Technical debt frustrates developers.

Xy Y¥Y]

Frustrated developers are more likely
to leave.

¥ @Nhnja

Some lingering debt is inevitable.

Don't be a perfectionist.

Figure out the project tolerance, and
work with it.

¥ @Nhnja

Use these arguments to
justify the additional time

it takes to do things right

¥ @Nhnja

Refactoring

ry — Y Y]

The single greatest tool in your toolbox

¥ @Nhnja

What is it?

Systematically changing the code
without changing functionality, while
improving design and readability.

¥ @Nhnja

Refactoring

2 Slow and steady wins the race.

% The end goal is to refactor without breaking existing
functionality.

¥ @hnja

Refactoring

2+ Replace functions and modules incrementally.
2 Test as you go.

2+ Tests are mandatory at this step.

¥ @hnja

m Engineering

Undebt: How We Refactored 3 Million Lines of
Code

'3 Evan H., Software Engineering Intern
‘ Aug 23, 2016

github.com/Yelp/undebt, Yelp
refactoring

Use proper design patterns

| faif / python-patterns ®watch 1538 Kstar 17879

README.md

python-patterns

A collection of design patterns and idioms in Python.

github.com/faif/python-patterns

Use depreciation patterns
Like openstack debtcollector

class removed_property(object):
"""Property descriptor that deprecates a property.
This works like the ~ @property '~ descriptor but can
be used i1nstead to provide the same functionality
and also interact with the :mod: warnings module to
warn when a property 1s accessed, set and/or deleted.

¥ @Nhnja

Use vulture. py
to find dead or unreachable code

S pip install vulture
S vulture script.py package/

or

S python -m vulture script.py package/

github.com/jendrikseipp/vulture

sample code

def foo():
print("foo")

def bar():
print("bar")

def baz():
print("baz")

foo()
bar()

vulture.py output

> python -m vulture foo.py
foo.py:7: unused function 'baz' (608% confidence)

Prioritize

What causes the biggest & most
frequent pain points for developers?

¥ @Nhnja

Just like with
manétarydebt,
pay off the high interest

loan ‘first.

L

Shelf Life

9 T © O

What's the life expectancy of this
project?

Longer shelf life -> higher debt
interest

¥ @Nhnja

Technical debt can be strategic

If you don't have to pay it off, you got
something for nothing.

¥ @Nhnja

Making time for refactoring depends
on the size of your team, and the size
of your problem.

Guidelines

-+ Small

+ Devote a week every -8 weeks

% Medium

+ Devote a person every |-4 weeks, rotate

* Large

¥ @hnja

-

v:\ ~ .’._'_) " " : .: ;)
VAW BN o ey
°“‘ o 'y ’\)4\':"' S Th
.q. I. . Y

ect To Be Frustrated

Ex
’IPI;e process @T’Eﬂeaning up days /
months / Years-of bad€ode can be
analogous with untangling a ball of
yarn.
Don't give up.

¥ @Nnja

memegenerator.net

Thank You!

Python @ Microsoft:
bit.ly/parispython

§ 0 e © §

