V=IV=

GraphQL in Python

rrrrrrrrrrrrrrrrrrrrrrrr

T\Iho am |

e Patrick Arminio
e Backend Engineer @ Verve
e Chairperson at Python Italia

e @patrick91 online

GraphQL?

WEB 1.0

WEB 2.0

REST APIs

While REST APIs are good, they
have some shortcomings

Too many API
calls
(under-fetching)

http GET /user/1

"name”: "Patrick",

"friends": [
"/users/2",
"/users/3",
"/users/4"

I

"avatar': "/images/123"

http GET /user/2
http GET /user/3
http GET /user/4

http GET /user_with_friends/1

"name" : "Patrick",

"friends": |

{ "name": "Fiorella" },
{ "name": "Marco" },
{ "name": "Marta" }

I

"avatar': "/images/123"

http GET /user_with_friends/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1

http GET /user_with_friends/1

http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1

http GET /user_with_small_avatar/1

http GET /user_with_friends/1

http GET /user_with_friends_and_avatar/1

http GET /user_with_avatar/1

http GET /user_with_small_avatar/1

http GET /user_with_small_avatar_and_friends/1

http
http
http
http
http
http

GET
GET
GET
GET
GET
GET

fuser_with_friends/1
/user_with_friends_and_avatar/1
/user_with_avatar/1
/user_with_small_avatar/1
/user_with_small_avatar_and_friends/1
/page-1

http
http
http
http
http
http
http

GET
GET
GET
GET
GET
GET
GET

fuser_with_friends/1
/user_with_friends_and_avatar/1
/user_with_avatar/1
/user_with_small_avatar/1
/user_with_small_avatar_and_friends/1
/page-1

/page-2

[...] At the time, we had
over 1,000 different REST
endpoints at Goursera
(and now we have many
more) |[...]

Source: Coursera
https://dev-blog.apollodata.com/courseras-journey-to-graphql-a5ad3b77f39a

Too much data
(over-fetching)

"name": "Patrick",
"friends": [{
"name": "Ernesto",
"friends": ["/users/2", "/users/3",
"avatar": {
"url": "//cdn.x.com/123.jpg",
"width": 4600,
"height": 300
}
h
{
"name" : "Simone",
"friends": ["/users/2", "/users/3",
"avatar": {
"url": "//cdn.x.com/123.jpg",
"width": 400,
"height": 300
}
h
{
"name": "Marta",

"friends": ["/users/2", "/users/3",

"avatar": {
"url": "//cdn.x.com/123.jpg",
"width": 4600,
"height": 300

"Jusers/4"],

"/users/4"],

"/users/4"],

REST AND HYPERMEDIA
LINKS ARE GREAT, BUT
NOT ALWAYS THE BEST
CHOICE WHEN BUILDING
WEBSITES OR APPS.

Documentation

-} SWagger http://localhost:9292 /api/swagger_doc Explore

Iapi Show/Hide ListOperations = Expand Operations = Raw
/api/ping.json

/api/raise.json Raises an exception.
/api/vi(/.json) Returns acme.
/api.json Returns acme.
/api/ring.json Returns pong.
/api/ring.json

m /api/ring.json

/api/decorated/ping.json Returns pong.
/api/spline.json Creates a spline that can be reticulated.
/api/data.json Returns a plain text file.
/api/avatar.json Upload an image.
/api/swagger_doc.json Swagger compatible API description
/api/swagger_doc/{name}.json Swagger compatible API description for specific API

[Base urL: http://localhost:9292 , ap1 version: v1]

Can we do bhetter?

We could extend
REST, but...

There won't he a
standard way

GraphQL! <

ErathL is a Query
Language for APIs.

Source: https://graphqgl.org/

GraphQL is a
specification

Single HTTP
endpoint

http POST /graphql

user(id: "1") {
name
friends {
name

}

avatar

"user": {
"name" : "Patrick”,

"friends": |

{ "name": "Fiorella" },
{ "name": "Marco" },
{ "name": "Marta" }

1,

"avatar”: "/images/123"

GraphQL is
typed

type Query {

user(id: ID!): User

Y

type User {
name: String!
friends: [Friend!]!
avatar: String!

Y

type Friend {

name: String!

type Query {

user(id: ID!): User

Y

type User {
name: String!
friends: [Friend!]!
avatar: String!

Y

type Friend {

name: String!

type Query {

user(id: ID!): User

Y

type User {
name: String!
friends: [Friend!]!
avatar: String!

Y

type Friend {

name: String!

type Query {
userkid: ID!)|: User

Y

type User {
name: String!
friends: [Friend!]!
avatar: String!

Y

type Friend {

name: String!

type Query {

user(id: ID!):|User

Y

type User {
name: String!
friends: [Friend!]!
avatar: String!

Y

type Friend {

name: String!

type Query {

user(id: ID!): User

Y

type User {
name: String!
friends: [Friend!]!
avatar: String!

Y

type Friend {

name: String!

Ecalar Types

o [Nt

e float

e 5tring

e Boolean

e Any user defined scalars (IE. datetime)

Ehject Types

Object Types are the objects defined in your GraphQL
API. They are objects that have fields that can of scalar

types or other object types.

-9

A

Type “modifiers”

e List

e Non-nulls

Why is this
important?

Static checking

Documentation
and introspection

Let’s see an
example

New Tab

PRETTIFY HISTORY httptzz127‘0.0.1:8888/graphql COPY CURL SHARE PLAYGROUND

<
=
w
I
(v]
)

HTTP HEADERS

Operations

EMain operations

Query

Allows to request data from the server.

Subscription

Allows to subscribe to events, for example when

a new user has been created.

Mutation

Allows you to modify/create data on the server.
But it is not limited to data, can be used to run

anything with side effects.

Euery (shortcut)

{
user(id: "1") A

Nname

}

Euery

query QueryName(Sid: ID!) A
user(id: Sid) {

Nname

ﬁutation

mutation MutationName(Sinput: CreateUserInput!) {
createUser(input: Sinput) {
ok

Euhscription

subscription SubscriptionName {
onUserCreated {

Nname

GraphQL in
Python

2 libraries

Kriadne

https://github.com/mirumee/ariadne/

e Quite new
e Python 3.5+
e “Closer to GraphQL"

ariadne

Eraphene

https://graphene-python.org/

Most popular
Python 2.7+ and Python 3.5+
Nice abstraction on top of GraphQL

Support for Django and more frameworks

Graphene

Python

Let’s start with
Ariadne

T\Ie need a schema

type Query {

user(id: ID!): User

}

type User {
name: String!
friends: [Friend!']!
avatar: String!

}

type Friend {

name: String!

T\Ie need a schema

type Query {

user(id: ID!): User

type User {
name: String!
friends: [Friend!']!

avatar: String!

type Friend {

name: String!

T\Ie need a schema

type Query {

user(id: ID!): User

type User {
name: String!
friends: [Friend!']!

avatar: String!

type Friend {

name: String!

How do we link
data to the fields?

Resolvers

Each field on each type is
backed by a function
called the resolver which
is provided by the
GraphQL server developer.

Ksimple resolver

def resolve_user(_, info, id):
return {
"name"”: "Patrick",

"friends": |

{"name": "Fiorella"},
{"name": "Marco"},
{"name": "Marta"},

1,

"avatar": "/images/123",

Kttaching a resolver to a Type

resolvers = {
"Query": {"user": resolve_user},

"User": {"name": resolve_name},

Ereating and running the server

server = GraphQLMiddleware.make_simple_server(
schema,

resolvers

server.serve_forever()

New Tab

PRETTIFY HISTORY httptzz127‘0.0.1:8888/graphql COPY CURL SHARE PLAYGROUND

<
=
w
I
(v]
)

HTTP HEADERS

Intermissio

Graphene

The schema is
defined in Python

Our schema

type Friend {

name: String!

}

type User {
name: String!
friends: [Friend!']!
avatar: String!

}

type Query {

user(id: ID!): User

Eefining types with Graphene - Friend

class FriendType(graphene.ObjectType):

name = graphene.String(required=True)

* resolvers can also be external functions

Types and resolvers
live together™

Eefining types with Graphene - User

class UserType(graphene.ObjectType):
name = graphene.String(required=True)
friends = graphene.List(graphene.NonNull(FriendType))

avatar = graphene.String(required=True)

def resolve_friends(self, info):
return [

FriendType(name="Marta"),

FriendType(name="Marco"),

FriendType(name="Fiorella"),

Eefining types with Graphene - Query

class Query(graphene.ObjectType):
user = graphene.Field(
UserType,
id=graphene.ID()

def resolve_user(self, info, id):
return UserType(
name="Patrick",

avatar="/images/123"

ﬁnally, the schema

schema = graphene.Schema(query=Query)

Ejango Support

Graphene has support for Django, meaning that:

e Has abuiltin view
e |t can create types from django models
e |t can create mutations from Forms and DRF Serializers

e Has support for django filters

What about

Authentication

Kuthentication

When using GraphQL with HTTPs you have 3 options for

authentication:

e Sessions
e HTTP Headers

e Field arguments

Sessions

Basically you rely on the browser sending cookies to your backend
service, this works pretty well with Django.
Good when you an API that works only with your frontend and when

you don't have a mobile application.

Headers

You can use headers when you have third party clients accessing

your APl or when you have a mobile app.

Usually it is used in combination with JWT tokens.

ﬁeld params

This might be a good solution when you only have a few fields that

require authentication. It could work like this:

myBankStatement(token: "ABC123") {
date

amount

Quite easy to create
“malicious” queries

thread(id: "some-id") {
messages(first: 99999) {

thread {
messages(first: 99999) {
thread {
messages(first: 99999) {
thread {
...repeat times 10000. ..
}

Eolution for “malicious™ queries

To prevent bad queries to happen we can adopt various solutions:

e [imeouts
e Limits on nested fields
e (Query cost

e Static queries

imeouts

Check how long a query is taking, if it is taking more than 1 second

you can kill it.

e Prevents huge queries from DOS-ing your server

e Prevents long waiting time

Emit on nested fields

You can parse the incoming GraphQL request and deny queries that
are requesting for fields that are too nested. For example you can

only allow for maxing 3 levels of nesting and no more.

Easy solution when you don't need complex checks.

Query costs

This is useful if you have third party clients and when you also want

to limit their APl usage.

The idea is to give each field a cost and calculate the cost of the

query based on the number of fields requested.

This works extremely well with paginated data (where you know how

much data you're asking for)

Query costs - example query

query {
viewer {

repositories(first: 50) {
issues(first: 10) {

title

Euery costs - calculating the cost

50 = 50 repositories
+
50 x 10 = 500 repository issues

= 550 total nodes

Etatic queries

Instead of allowing any query to be ran on your APl you could allow
only a predefined list of queries. You'd save those queries on a
database and reference them by ID. So instead of doing a request
passing the query to GraphQL you'd pass only the ID (and the

variables if any).

http POST /graphql?id=123

Etatic queries

e (ood to prevent unwanted queries

e Still allows to use all the advantages of GraphQL

e A Dbit cumbersome to deploy

e |fyou have third party you need a way for them to declare
queries

e Potentially good for caching (see next slide)

http GET /graphql?id=123

Caching

Client Caching

Network Gaching

Application
Caching

Additional Things

Arguments and
Inputs

{

search(text: "an") A

title

createUser(input: { .. }) {
user {

Nname

Input Types

input CreateUserInput {
name: String!

age: Int

}

EEEEE

enum Conference {
PYPARIS
PYCONX
PYCONUS

}

Interfaces

interface Character {
id: ID!
name: String!

}

type Human implements Character {
id: ID!

name: String!

friends: [Character]

starships: [Starship]
}

union SearchResult = Human | Droid

{

search(text: "an") {
. on Human {
name

height

. on Droid {
name

primaryFunction

Errors

Q user

PRETTIFY HISTORY http://127.0.0.1:8888/graphq]l COPYICURIE SHARE PLAYGROUND

<
=
w
5
O
)

HTTP HEADERS

And more

Frontend

?rontend developers henefit
a lot from GraphQL, thanks
to all the tooling available.

Relay

https://facebook.github.io/relay/

e Made by Facebook
e React Only

Kpollo

https://www.apollographql.com/

e Supports many frameworks (React, Vue, etc
e Big community

e Lots of tooling

)QEPOLLO

THANKS!

Patrick Arminio

@patrick91

V=rV=

