
GraphQL in Python
and Django
Patrick Arminio @patrick91

Who am I

● Patrick Arminio

● Backend Engineer @ Verve

● Chairperson at Python Italia

● @patrick91 online

GraphQL?

WEB 1.0

WEB 2.0

REST APIs

While REST APIs are good, they
have some shortcomings

Too many API
calls

(under-fetching)

http GET /user/1

{

 "name": "Patrick",

 "friends": [

 "/users/2",

 "/users/3",

 "/users/4"

],

 "avatar": "/images/123"

}

http GET /user/2
http GET /user/3
http GET /user/4

http GET /user_with_friends/1

{

 "name": "Patrick",

 "friends": [

 { "name": "Fiorella" },

 { "name": "Marco" },

 { "name": "Marta" }

],

 "avatar": "/images/123"

}

http GET /user_with_friends/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1
http GET /user_with_small_avatar/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1
http GET /user_with_small_avatar/1
http GET /user_with_small_avatar_and_friends/1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1
http GET /user_with_small_avatar/1
http GET /user_with_small_avatar_and_friends/1
http GET /page-1

http GET /user_with_friends/1
http GET /user_with_friends_and_avatar/1
http GET /user_with_avatar/1
http GET /user_with_small_avatar/1
http GET /user_with_small_avatar_and_friends/1
http GET /page-1
http GET /page-2

[...] At the time, we had
over 1,000 different REST
endpoints at Coursera
(and now we have many
more) [...]

Source: Coursera
https://dev-blog.apollodata.com/courseras-journey-to-graphql-a5ad3b77f39a

Too much data
(over-fetching)

{

 "name": "Patrick",

 "friends": [{

 "name": "Ernesto",

 "friends": ["/users/2", "/users/3", "/users/4"],

 "avatar": {

 "url": "//cdn.x.com/123.jpg",

 "width": 400,

 "height": 300

 }

 },

 {

 "name": "Simone",

 "friends": ["/users/2", "/users/3", "/users/4"],

 "avatar": {

 "url": "//cdn.x.com/123.jpg",

 "width": 400,

 "height": 300

 }

 },

 {

 "name": "Marta",

 "friends": ["/users/2", "/users/3", "/users/4"],

 "avatar": {

 "url": "//cdn.x.com/123.jpg",

 "width": 400,

 "height": 300

 }

 }

],

 "avatar": {

 "url": "//cdn.x.com/123.jpg",

 "width": 400,

 "height": 300

 }

}

REST AND HYPERMEDIA
LINKS ARE GREAT, BUT
NOT ALWAYS THE BEST
CHOICE WHEN BUILDING
WEBSITES OR APPS.

Documentation

Can we do better?

We could extend
REST, but...

There won’t be a
standard way

GraphQL! ✨

GraphQL is a Query
Language for APIs.

Source: https://graphql.org/

GraphQL is a
specification

Single HTTP
endpoint

http POST /graphql

{

 user(id: "1") {

 name

 friends {

 name

 }

 avatar

 }

}

{

 "user": {

 "name": "Patrick",

 "friends": [

 { "name": "Fiorella" },

 { "name": "Marco" },

 { "name": "Marta" }

],

 "avatar": "/images/123"

 }

}

GraphQL is
typed

type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

Scalar Types

● Int

● Float

● String

● Boolean

● Any user defined scalars (IE. datetime)

Object Types are the objects defined in your GraphQL

API. They are objects that have fields that can of scalar

types or other object types.

Object Types

Type “modifiers”

● List

● Non-nulls

Why is this
important?

Static checking

Documentation
and introspection

Let’s see an
example

Operations

3 Main operations

Subscription

Allows to subscribe to events, for example when

a new user has been created.

Mutation

Allows you to modify/create data on the server.

But it is not limited to data, can be used to run

anything with side effects.

Query

Allows to request data from the server.

Query (shortcut)

{

 user(id: "1") {

 name

 }

}

Query

query QueryName($id: ID!) {

 user(id: $id) {

 name

 }

}

Mutation

mutation MutationName($input: CreateUserInput!) {

 createUser(input: $input) {

 ok

 }

}

Subscription

subscription SubscriptionName {

 onUserCreated {

 name

 }

}

Intermission

GraphQL in
Python

2 libraries

Ariadne

https://github.com/mirumee/ariadne/

● Quite new

● Python 3.5+

● “Closer to GraphQL”

Graphene

https://graphene-python.org/

● Most popular

● Python 2.7+ and Python 3.5+

● Nice abstraction on top of GraphQL

● Support for Django and more frameworks

Let’s start with
Ariadne

We need a schema
type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

We need a schema
type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

We need a schema
type Query {

 user(id: ID!): User

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Friend {

 name: String!

}

How do we link
data to the fields?

Resolvers

Each field on each type is
backed by a function
called the resolver which
is provided by the
GraphQL server developer.

A simple resolver
def resolve_user(_, info, id):

 return {

 "name": "Patrick",

 "friends": [

 {"name": "Fiorella"},

 {"name": "Marco"},

 {"name": "Marta"},

],

 "avatar": "/images/123",

 }

Attaching a resolver to a Type
resolvers = {

 "Query": {"user": resolve_user},

 "User": {"name": resolve_name},

}

Creating and running the server
server = GraphQLMiddleware.make_simple_server(

 schema,

 resolvers

)

server.serve_forever()

Done!

Intermission

Graphene

The schema is
defined in Python

Our schema
type Friend {

 name: String!

}

type User {

 name: String!

 friends: [Friend!]!

 avatar: String!

}

type Query {

 user(id: ID!): User

}

Defining types with Graphene - Friend
class FriendType(graphene.ObjectType):

 name = graphene.String(required=True)

Types and resolvers
live together*

* resolvers can also be external functions

Defining types with Graphene - User
class UserType(graphene.ObjectType):

 name = graphene.String(required=True)

 friends = graphene.List(graphene.NonNull(FriendType))

 avatar = graphene.String(required=True)

 def resolve_friends(self, info):

 return [

 FriendType(name="Marta"),

 FriendType(name="Marco"),

 FriendType(name="Fiorella"),

]

Defining types with Graphene - Query
class Query(graphene.ObjectType):

 user = graphene.Field(

 UserType,

 id=graphene.ID()

)

 def resolve_user(self, info, id):

 return UserType(

 name="Patrick",

 avatar="/images/123"

)

Finally, the schema
schema = graphene.Schema(query=Query)

Done!

Django Support
Graphene has support for Django, meaning that:

● Has a built in view

● It can create types from django models

● It can create mutations from Forms and DRF Serializers

● Has support for django filters

What about

Authentication

Authentication
When using GraphQL with HTTPs you have 3 options for

authentication:

● Sessions

● HTTP Headers

● Field arguments

Sessions
Basically you rely on the browser sending cookies to your backend

service, this works pretty well with Django.

Good when you an API that works only with your frontend and when

you don’t have a mobile application.

Headers
You can use headers when you have third party clients accessing

your API or when you have a mobile app.

Usually it is used in combination with JWT tokens.

Field params
This might be a good solution when you only have a few fields that

require authentication. It could work like this:

{

 myBankStatement(token: "ABC123") {

 date

 amount

 }

}

Security

Quite easy to create
“malicious” queries

{

 thread(id: "some-id") {

 messages(first: 99999) {

 thread {

 messages(first: 99999) {

 thread {

 messages(first: 99999) {

 thread {

 # ...repeat times 10000...

 }

 }

 }

 }

 }

 }

 }

Solution for “malicious” queries
To prevent bad queries to happen we can adopt various solutions:

● Timeouts

● Limits on nested fields

● Query cost

● Static queries

Timeouts
Check how long a query is taking, if it is taking more than 1 second

you can kill it.

● Prevents huge queries from DOS-ing your server

● Prevents long waiting time

Limit on nested fields
You can parse the incoming GraphQL request and deny queries that

are requesting for fields that are too nested. For example you can

only allow for maxing 3 levels of nesting and no more.

Easy solution when you don’t need complex checks.

Query costs
This is useful if you have third party clients and when you also want

to limit their API usage.

The idea is to give each field a cost and calculate the cost of the

query based on the number of fields requested.

This works extremely well with paginated data (where you know how

much data you’re asking for)

Query costs - example query
query {

 viewer {

 repositories(first: 50) {

 issues(first: 10) {

 title

 }

 }

 }

}

Query costs - calculating the cost
50 = 50 repositories

+

50 x 10 = 500 repository issues

 = 550 total nodes

Static queries
Instead of allowing any query to be ran on your API you could allow

only a predefined list of queries. You’d save those queries on a

database and reference them by ID. So instead of doing a request

passing the query to GraphQL you’d pass only the ID (and the

variables if any).

http POST /graphql?id=123

Static queries
● Good to prevent unwanted queries

● Still allows to use all the advantages of GraphQL

● A bit cumbersome to deploy

● If you have third party you need a way for them to declare

queries

● Potentially good for caching (see next slide)

http GET /graphql?id=123

Caching

Client Caching

Network Caching

Application
Caching

Additional Things

Arguments and
Inputs

{

 search(text: "an") {

 title

 }

}

{

 createUser(input: { … }) {

 user {

 name

 }

 }

}

Input Types

input CreateUserInput {

 name: String!

 age: Int

}

Enums

enum Conference {

 PYPARIS

 PYCONX

 PYCONUS

}

Interfaces

interface Character {

 id: ID!

 name: String!

}

type Human implements Character {

 id: ID!

 name: String!

 friends: [Character]

 starships: [Starship]

}

union SearchResult = Human | Droid

{

 search(text: "an") {

 ... on Human {

 name

 height

 }

 ... on Droid {

 name

 primaryFunction

 }

 }

}

Errors

And more

Frontend

Frontend developers benefit
a lot from GraphQL, thanks
to all the tooling available.

Relay

https://facebook.github.io/relay/

● Made by Facebook

● React Only

Apollo

https://www.apollographql.com/

● Supports many frameworks (React, Vue, etc)

● Big community

● Lots of tooling

Verve is Hiring 🎉
Want to work in an amazing company and use Python 3, GraphQL and Django?

https://verve.co/careers/

THANKS!
Patrick Arminio

@patrick91

