
Invitation to a New Kind of Database

Sheer El Showk

Cofounder, Lore Ai

www.lore.ai

We’re Hiring!

http://www.lore.ai

Overview

1. Problem statement (~2 minute)

2. (Proprietary) Solution: Datomics (~10 minutes)

3. Proposed Open Source Solution: (~8 minutes)

a. Easy Version(s)

b. Hard Version(s)

4. Discussion & More Brain Storming (after talk & all of tomorrow)

Mongo
Cluster

MySQL
(soon

ElasticSearch)

Minio
(distributed blob

storage)

➔ NoSQL vs SQL

➔ Data-model vs database type

◆ Column vs Row vs Document

➔ Backups: consistent snapshots across
different (types of) DBs.

➔ Versioning: changes over time

➔ Trade-offs:

◆ Scaling

◆ Consistency
Redis

(distributed
caching)

Input
Process

or

Service
Broker

Load
B

alancer

NLP
Services

Django
Web

Web
scraper

s

Pipeline

Logging

Cron-jo
bs

KG
Service

Entity
Generat

or

Django
API

Celery Workers

The hard thing about hard things...

Deconstructing the Database

https://youtu.be/Cym4TZwTCNU

Rich Hickey
(inventor of Clojure)

Outdated, Bad Ideas:

● Changing data in place
(mutability)

● Fixed schema structure

● Disk locality is an outdated idea
(networks are faster than disks!)

● Database must be a server
(why not db as a library?)

● Reads & Writes done by same
system

Even modern “SQL/NoSQL” DBs make
out-dated trade-offs (e.g. consistency vs
scalability)

⇒ Can we come up with more
informed, better trade-offs?

https://youtu.be/Cym4TZwTCNU

Disclaimers

1. I have no affiliation with Datomic

2. I’ve never used Datomic

3. I’m compressing Hickey’s very nice talk into 10 min

⇒ Missing lots of important ideas/details

4. I’ve only been thinking about this for a few weeks (on & off)

Hickey’s Solution I: Fact-Based Schema

● “Atomic” unit of data (datom) is a “fact”:

Transaction Time Entity (subject) Property/Relation Value

12234 334 firstName sheer

12235 334 cofounderOf 445 (Lore)

● Fact “values” can be literals, lists, types or Ids
of other entities (i.e. relations).

● Encode arbitrary schema but additionally
includes “time” dimension.

● Don’t confound data with encoding.

“Equivalent” JSON:

{
 _id: 334,
 first_name: “sheer”,
 ...
 company: {
 name: “Lore”,
 ….
 }
 ….
}

Hickey’s Solution II: Immutable Data

● All writes add/retract a “fact” from DB

● Writes are appended to a “log”

⇒ append only system

● Deletions are just a series of “retractions”

● Operations (add/del) are “time-stamped”

Data is never deleted!

● The database is just a log of very granular updates of facts.

● Consistency is trivial: select a timestamp and read log up to
timestamp.

Time Op Ent Rel Value

123 add sheer email sheer@gmail.com

124 add sheer email sheer@yahoo.com

125 del sheer email sheer@gmail.com

126 add sheer livesIn Paris

Hickey’s Solution III: Structural Sharing

● Consistent reads require versioning (timestamps) so what
about an index?

● Hickey (+Phil Bagwell) invented/improved “HMAT”

○ Hash-mapped Array Trie

○ Structural sharing for efficiently versioning indices

○ High (32-way) branching ratio for shallow trees

● Querying element at fixed time-stamp only requires
accessing simple path on tree

○ Cache/access subset of index as required.

● Universal fact-based schema:

○ only need fixed number (6) of indices

○ composite index on ent-rel-value, rel-ent-value, etc.

https://hypirion.com/musings/understanding-persistent-vector-pt-1

https://hypirion.com/musings/understanding-persistent-vector-pt-1

Hickey’s Solution IV: Separate Reads & Writes

● Reads, queries and index lookups happen in client
process (i.e. here client means app server not
user/browser).

● Client-side library provides in-process indexing, queries,
aggregations, etc

● Granular data model (fact-based) and incremental index

⇒ efficient caching of working set (facts & sub-trees)

● Consistency is trivially assured

⇒ each timestamp is consistent “snapshot” of DB.

● Trivial scalability

⇒ every app server is a processing peer.

● Only bottleneck is Transactor but it just appends
updates to a log (can be made very fast).

How much of this can we replicate?

Improve?

Proposal
1. Versioned Document Store (“easy”)

a. Update log via JSON-patch events

b. Instantiate Documents in JSON-store (mongo) for near real-time indexing

2. Versioned Relational Document Store (“hardish”)

a. Add “real-time” indexing to the above and restrict to “shallow” json linked by relations.

3. Fully Versioned Indices (“hard”)

a. Implement HMAT or similar (see https://github.com/tobgu/pyrsistent)

4. Make it all efficient (“very hard”)

a. Cythonize

b. Tweak caching, disk layout, etc.

https://github.com/tobgu/pyrsistent

Writer options

Versioned JSON Store
● Two ideas for write server (“Transactor”):

○ Append-only Mongo Collection
○ Redis-queue persisted to S3/Minio flat file

● Format:
○ Json-patch files (“transaction”)
○ Json-schema library to validate

● Read/Index servers:
○ Cluster of Mongo/ES servers “instantiating”

docs using jsonpatch library.
○ Indexing “almost” real-time but only

“current” timestamp.

Only capturing some benefits (little contention,
versioning, some schema independence).

● Only server-side processing.
● No versioned index.
● Essentially: just versioned replication

Mongo Minio
(distributed blob

storage)

Redis

Read Cluster

Mongo/
ES

Cluster

Mongo/
ES

Cluster

Mongo/
ES

Cluster

ETL via JSONPATCH

Versioned Relational JSON Store
● Enforce “shallow” JSON

○ Only strings, ints, lists, etc as values
○ Dicts/subdocs replaced by “ids”

● Index in real-time:
○ Directly index append-log collection
○ Manual index in redis
○ Index individual “facts” not just docs

● Transactor manually validates patched JSON:
○ Enforce existence on IDs (foreign keys)
○ Ensure patch respects schema

Notes

● JSON schemas are JSON docs so can be versioned as special collection in DB.

● Subtle issue: do we enforce FK constraints if doc/entity “retracted”?

● Indexing/reads are still largely centralized (redis/mongo index on append-log).

Sample patch:

{
 _id: 334,
 prev_checksum: “6d96617b37f4f662783c957”,
 patches: [
 {“op”: “add”, “path”: “/first_name”, “value”: “sheer”},
 {“op”: “add”, “path”: “/company”, “value”: Id(443)},
]
}

Fully Versioned Index
Core Ideas:

● Can we move in-process?

○ HMAT or other persistent index?

(see https://github.com/tobgu/pyrsistent)

● Cache/access individual facts or index subtrees directly in process (with two
tiered external cache like Datomics).

● Need to implement in-memory query engine using lazy-access cached persistent
index.

○ Pandas (like?)

○ See https://github.com/tobgu/qcache

● Transactor or Indexer has to be able to merge “live” index (recent facts) with
persistent index.

https://github.com/tobgu/pyrsistent
https://github.com/tobgu/qcache

Make It All Very Efficient

● Cythonize (what parts?)

○ Jsonpatch

○ Schema validation

● Use dicts/native-types instead of JSON

● Fast serialization: msgpack, pickle, etc..

● Can we borrow existing OSS technologies for indexing, etc..

Some Comments

● An index is a tree:

○ Represent in JSON/dict and version/store like log?

● Schemas are also just documents

○ Can version and manage as a special collection

● Transactions are also “first class” so can carry additional
metadata

● More complex ops (+=1) require Transactor to translate op into
atomic updates.

Interested in working on this?

Contact me!

Slides will go on blog.lore.ai

Bye!

