Talks
Slides or presentation material for the talks are currently being collected and are published as soon as we get them.
All the videos are available as a YouTube collection.
If you don’t want to use YouTube, you can download the MP4 files from here.
Keynote
- Python for non-coders
By: David Louapre, Science étonnante & Ubisoft
Slides: David Louapre-629a77af.pdf
Video: here
- Technical Debt: the Code Monster in your Closet
By: Nina Zakharenko, Microsoft
Slides: Nina Zakharenko-3b99e364.pdf
Video: here
Core Python
- Crossing the native code frontier
By: Serge sans Paille, Namek
Slides / presentation material (online): http://serge-sans-paille.github.io/talks/pydata2018/output/index.html#/step-1
Video: here
- DSL in Pyrser
By: Lionel Auroux, LSE EPITA
Slides: Lionel Auroux-5d4ebb18.pdf
Video: here
- How to use AsyncIO to make the most of a CPU Bound and IO Bound software with Python 3.7
By: Rémy Hubscher, ChefClub
Slides / presentation material (online): https://natim.github.io/django-slides/asyncio-io-cpu-bound-en/#/
Video: here
- Porting application from Python 2.x to 3.x
By: Philippe Boulanger, INVIVOO
Slides: Philippe Boulanger-6d79b508.pdf
Video: here
- Unexpected Dataclasses
By: Pierre Alexandre Schembri, NETSACH
Slides: Pierre Alexandre Schembri-9cc74f5a.pdf
Video: here
- Using type annotation in Python
By: Philippe Fremy, IDEMIA
Slides: Philippe Fremy-31b0239a.pdf
Video: here
Data Science
- (Deep) Machine Learned Model Deployment with ONNX
By: Xavier Dupré, Microsoft
Slides / presentation material (online): http://www.xavierdupre.fr/app/jupytalk/helpsphinx/notebooks/onnx_deploy_pyparis.html#onnxdeploypyparisrst
Video: here
- A Short History of Array-based Computing in Python
By: Wolf Vollprecht, QuantStack
Slides: Wolf Vollprecht-0cc86b66.pdf
Video: here
- Beat a Google Ads Bidder using ML
By: Arnaud Fouchet, Dolead
Slides: Arnaud Fouchet-87114fa3.pdf
Video: here
- Data Science for Industry 4.0
By: Alessandro Giassi, Saint-Gobain Recherche Paris
Slides: Alessandro Giassi-f1044c5f.pdf
Video: here
- Deep Learning with PyTorch for more Fun and Profit (Part 2.5)
By: Alexander Hendorf, KÖNIGSWEG
Slides: Alexander Hendorf-7570ac42.pdf
Video: here
- Exploring image processing pipelines with scikit-image, joblib, ipywidgets and dash
By: Emmanuelle Gouillart, Joint Unit CNRS / Saint-Gobain
Slides: Emmanuelle Gouillart-59486166.pdf
Video: here
- GeoAlchemy: using SQLAlchemy with Spatial databases
By: Éric Lemoine, Oslandia
Slides: Éric Lemoine-52b7f92c.pdf
Video: here
- Geospatial data processing for image automatic analysis
By: Raphaël Delhome, Oslandia
Slides: Raphaël Delhome-2d4267d1.pdf
Video: here
- Let the AI Do the Talk: Adventures with Natural Language Generation
By: Marco Bonzanini, Bonzanini Consulting Ltd
Slides: Marco Bonzanini-a80fa109.pdf
Video: here
- Machine Learning with Scikit-Learn: quick clusterization of a very large malware dataset
By: Robert Erra, EPITA
Slides: Robert Erra-99ad525c.pdf
Video: here
- Modern Pandas - Writing effective, readable data pipeline
By: Hervé Mignot, Equancy
Slides: Hervé Mignot-2c465b89.pdf
Slides / presentation material (online): https://github.com/HerveMignot/PyParis2018
Video: here
- Pyodide: scientific Python compiled in WebAssembly, and application
By: Roman Yurchak,
Slides / presentation material (online): https://rth.github.io/talks/PyParis2018/#1
- Robosat: an Open Source and efficient Semantic Segmentation Toolbox for Aerial Imagery
By: Olivier Courtin, DataPink
Slides: Olivier Courtin-486f7730.pdf
Video: here
- Scikit-learn: news on making even better machine learning
By: Gael Varoquaux, Inria & Tom Dupré la Tour, Telecom Paristech
Slides: Gael Varoquaux+Tom Dupré la Tour-493b61d1.pdf Gael Varoquaux+Tom Dupré la Tour-a9c79f34.pdf
Video: here
- *Segmentation of 3-D materials science images : from raw data to physical measurements *
By: Chloe Brillatz, CNRS/St Gobain Research Paris
Slides: Chloe Brillatz-34877355.pdf
Video: here
- Using Deep Learning to rank and tag millions of hotel images
By: Christopher Lennan, idealo.de & Tanuj Jain, Idealo
Slides: Christopher Lennan+Tanuj Jain-475f1087.pdf
Video: here
- Vaex: Out of Core Dataframes for Python
By: Maarten Breddels, Independant / Maarten Breddels & Jovan Veljanoski, XebiaLabs
Slides: Maarten Breddels+Jovan Veljanoski-a00dc422.pdf
Slides / presentation material (online): https://github.com/maartenbreddels/talk-pyparis-2018
Video: here
Tools
- Interactive widgets in the Jupyter Notebook
By: Martin Renou, QuantStack
Slides: Martin Renou-ad2c3fca.pdf
Slides / presentation material (online): https://github.com/QuantStack/quantstack-talks/tree/master/2018-11-14-PyParis-widgets
Video: here
- Jupytext: Edit Jupyter notebooks represented as Python scripts
By: Marc Wouts, Capital Fund Management
Slides / presentation material (online): https://github.com/mwouts/jupytext_pyparis_2018/blob/master/README.md
Video: here
- Version control in 2018: present and future
By: Pierre-Yves David, Octobus.net
Slides / presentation material (online): https://octobus.net/presentations/version-control-2018.html#/title-slide
- Vim Your Python, Python Your Vim
By: Miroslav Šedivý, UBIMET GmbH
Slides: Miroslav Šedivý-a6df38f3.pdf
Video: here
Web & Cloud
- A better way to use modern Javascript/Node.js with Django
By: Romain Dorgueil, Makersquad
Slides: Romain Dorgueil-a3f47138.pdf
Video: here
- *Anyblok WMS Base *
By: Georges Racinet, Anybox SAS
Slides / presentation material (online): https://slides.racinet.fr/2018/pyparis/
- Big forms with JSON schemas and transcrypt
By: Philippe Entzmann, Aon France
Slides: Philippe Entzmann-b8c559f7.pdf
Video: here
- GraphQL in Python and Django
By: Patrick Arminio, Verve
Slides: Patrick Arminio-1cba4f64.pdf
Video: here
- Inside Rapid.Space: Open Hardware and Free Software = Ultra Low Cost High Performance Cloud
By: Jean-Paul Smets, Nexedi
Slides: Jean-Paul Smets-d948a210.pdf
Video: here
- Invitation to a New Kind of Database
By: Sheer El Showk, Lore Ai
Slides: Sheer El Showk-7f760599.pdf
- Serverless Python
By: Michael Bright, @mjbright Consulting
Slides: Michael Bright-319c4ecb.pdf
Video: here
- The SIMPLE Framework, simplifying complex container clusters
By: Mayank Sharma, CERN
Slides: Mayank Sharma-d62634c7.pdf
Video: here
- What is asyncio and when to use it, an example with WatchGhost
By: Arthur Vuillard, hashbang.coop
Slides / presentation material (online): https://static.hashbang.fr/pyparis18/#1
Video: here
Devops
- Bonobo, Airflow and Grafana to visualize your business
By: Romain Dorgueil, Makersquad
Slides: Romain Dorgueil-44be21ce.pdf
Video: here
- Python tooling for continuous deployment
By: Arthur Lutz, Logilab
Slides: Arthur Lutz-a4abc73a.pdf
Video: here
- Scaling from 0 to 60k RPM
By: Jean-Baptiste Aviat, Sqreen
Slides: Jean-Baptiste Aviat-78d02f6a.pdf
Video: here
Education
NOTE: Les présentations du track ‘Education’ ont lieu en français.
- Girls Can Code! summer camps: an experience of teaching computer science to young girls.
By: Garance Gourdel, ENS Paris Saclay & Paul Guenezan, EPITA / Association Prologin
Slides: Garance Gourdel+Paul Guenezan-5c5edc0d.pdf
- How we used Python to introduce teenagers to the fun of programming
By: Anne-Marie Tousch, Criteo & Syrine Krichene, Criteo
Slides: Anne-Marie Tousch+Syrine Krichene-178eaf43.pdf
- Python @ Sorbonne Université
By: Frederic Peschanski, Sorbonne Université - LIP6
Slides: Frederic Peschanski-4aba9775.pdf
- Python au Lycée: La réforme “Bac 2021” / L’informatique en quelques pointeurs
By: Frederic Peschanski, Sorbonne Université - LIP6
Slides: Frederic Peschanski-b3b418f7.pdf
- SageMath en 5 minutes
By: Nicolas Thiery, Université Paris Sud
Slides: Nicolas Thiery-3c76ea13.pdf
Slides / presentation material (online): https://mybinder.org/v2/gh/nthiery/shared-sage-notebooks/master/?filepath=2018-11-14-PyParis-Education-SageMath.ipynb
Tutorials
- Dataviz with matplotlib and seaborn
By: Francis Wolinski, Yotta Conseil
Slides / presentation material (online): http://yotta-conseil.fr/python/Dataviz_with_matplotlib_and_seaborn_PyParis_2018.html
- GeoSpatial Data Analysis using Python
By: Fereshteh Asgari, IRT SystemX
Slides / presentation material (online): https://github.com/fereshteh-asg/PyParis2018_Geospatial_Data
- Machine learning using scikit-learn
By: Guillaume Lemaitre, INRIA
Slides / presentation material (online): https://github.com/glemaitre/pyparis-2018-sklearn
- Parallel Data Analysis with Dask
By: Loïc Estève, Inria
Slides / presentation material (online): https://github.com/mrocklin/pydata-nyc-2018-tutorial
- Python Micro-services with Kubernetes
By: Michael Bright, @mjbright Consulting
Slides / presentation material (online): https://github.com/ContainerOrchestration/Labs/blob/DevConf2018/Orchestration-Kubernetes/Kubernetes.md
- Understanding and diagnosing your machine-learning models
By: Gael Varoquaux, Inria
Slides / presentation material (online): http://gael-varoquaux.info/interpreting_ml_tuto/